Variations in atmospheric pressure can present special problems for the respiratory systems of animals because atmospheric pressure affects the exchange of oxygen and carbon dioxide that occurs during animal respiration. Normal atmospheric pressure at sea level is the total pressure that a column of air above the surface of the Earth exerts (760 millimetres of mercury, or 1 atmosphere). The total pressure is the sum of the pressures that each gas—mainly nitrogen, oxygen, and carbon dioxide—would exert alone (the partial pressure of that gas; see respiration: The gases in the environment). As an animal breathes, oxygen moves from the environment across the respiratory surfaces into the blood; carbon dioxide moves in the reverse direction. This process occurs primarily by passive diffusion; each gas moves from an area of greater to lesser partial pressure, driven by the differential that exists across the respiratory surface. At higher altitudes, where the atmospheric pressure is lower, the partial pressure of oxygen is also lower. The partial pressure differential of oxygen, therefore, is also lower, and the organism effectively receives less oxygen when it breathes, even though the percentage of oxygen in the air remains constant. This lack of oxygen is why humans carry oxygen when ascending to high altitudes. Humans who live in mountainous regions, however, can become acclimatized to the lowered availability of oxygen, and certain animals such as llamas have adaptations of the blood that allow them to live at high altitudes. Birds have very efficient lungs, and many apparently have no problems flying to high altitudes, even for extended flight GROWTH
Because atmospheric pressure is relatively constant except in the mountains, it probably is of little importance in growth regulation.