Abstract:
Introduction:
Many of the chemical reactions, which take place in in living things are controlled by enzymes. In such cases, the enzyme is a protein in the cell which lowers the activation energy of a catalyzed reaction, which serves to increase the rate of the reaction.
Alkaline phosphatase is made throughout the body. Its function is to remove phosphate groups from nucleotides and proteins, many enzymes have their activity controlled by the addition and removal of phosphate groups. The blood serum level of Alkaline …show more content…
To determine the effect of enzyme and and substrate concentration upon the rate of reaction.
TO analyze some of the factors that control the rate of an enzyme-catalyzed reaction
Alkaline phosphatase, an enzyme, increases the rate of reaction for the conversion of p-Nitro-Phenyl Phosphate (pNPP, the substrate) to p-Nitrophenol (pNP, product) and inorganic phosphate (product). The rate of this reaction is affected by inhibitory compounds, enzyme and substrate concentration, PH and temperature. Being that the subject reaction takes place in humans (as well as other living things), it is hypothesized that the reaction contained therein, take place at or near optimal conditions.
To demonstrate the effect of substrate concentration upon the rate of the reaction catalyzed by alkaline phosphatase;
B) to plot the velocity of the reaction versus the substrate concentration to produce the Michaelis-Menten curve; C) to plot the reciprocal of the velocity versus the reciprocal of the substrate concentration to generate the linear Lineweaver-Burk plot; and, D) to determine the KM, Vmax and kcat values for alkaline phosphatase from both of these