The Airline Industry has its origin with the first scheduled service by the St Petersburg-Tampa Airboat Line on January 1, 1914. The plane, a Benoist XIV, conducted 1205 commercial flights across the Tampa bay in Florida, USA. The airline discontinued the service after three months, as the service proved to be unprofitable (Kaufmann, 2008).
The Benoist XIV was able to transport one passenger up to 135 km, almost one hundred years later, 853 passengers can be carried in the Airbus A380 up to 15,400 km.
Since these early days, the growth in Aviation has been phenomenal. From a standing start almost 100 years ago, aviation accounts for 11.6% of total world travel. (Ribeiro, et al.2007) See Figure 1.
[pic]
Figure 1 Worldwide transport industry broken up per travel type (WBCSD, 2004b)
The growth of the airline industry has been significant, as can be seen in Figure 2, the Passenger sector has grown from less than 10 billion passenger- km in 1950 to nearly 5000 billion in 2010 and the Cargo sector has grown from less than 1 billion tons-km to more than 170 billion tons-km. (Rodrigue et al, 2009).
From it’s beginning in 1914, the world airlines now comprise of 5,541 airlines listed with an IATA unique identifier, a meteoric rise by all accounts. (IATA, 2012).
[pic]
Figure 2 World Air Travel and World Air Freight Carried, 1950-2010 ( IATA)
The growth in aviation has been drive by 3 main factors (Holloway, 2003), they are:
• Deregulation:
Aviation has changed from a method of transport used by the wealthy to a common method for all. In the early days of aviation, the airline business was highly regulated and services could only be operated by state owned flag carriers. Through progressive
References: Bibliography • Markus Kaufmann, 2008, Cost/Weight Optimization of Aircraft Structures, KTH School of Engineering Sciences SE-100 44 Stockholm, SWEDEN. • Jean-Paul Rodrigue, Claude Comtois and Brian Slack, 2009, The Geography of Transport Systems, New York: Routledge. • Chris MARKOU, Geraldine CROS, Adrian CIORANU, Eunsuk YANG, 2011, Airline Maintenance Cost Executive Commentary, IATA. • P. STICKLER, 2002, Composite Materials for Commercial Transport – Issues and Future Research Direction, The Boeing Company. • Peter Horder, 2003, Airline Operating Costs, Managing Aircraft Maintenance Costs Conference, Brussels. • Anonymous, 2008, Fuel and Air Transport, Air Transport Department, Cranfield University. • Stephen Holloway, 2007, Straight and Level: Practical Airline Economics, Ashgate, Mohan M. Ratwani, Ph. D, Effect of Damage on Strength and Durability, RTO-EN-AVT-156. • Nicholas Stern, 2007. The Economics of Climate Change: The Stern Review. Edition. Cambridge University Press. • Xsc3 – Composite Engineering Course, Airbus Technical Training, 2007. • Dr. Douglas S. Cairns, 2010, Lysle A. Wood Distinguished Professor, Composite Materials For Aerospace Structures, , Department Of Mechanical And Industrial Engineering, Montana State University, ME 480 Introduction To Aerospace. • Tim Edwards, 2008, Composite Materials Revolutionise Aerospace Engineering, Ingenia Issue 36. • Advanced Composite Repair for Engineers, 1996, Boeing Technical Training. • Dr Hessam Ghasemnejad, 2011, Engineering Materials and Structures, AE3110. • Dr. Peter Barrington, 2012, Airline Economics, AE3111. • Franklin D. Harris, 2005, An Economic Model Of U.S. Airline Operating Expenses, University Of Maryland. • Lee, J. J., Lukachko, S. P., Waitz, I. A., And Schafer, A. 2001,. "Historical and Future Trends in Aircraft Performance, Cost and Emissions." Annual Review Energy Environment. • Tim Nelson, 2005, 787 Systems And Performance, Flight Operations Engineering, Boeing Commercial Airplanes. • ATA Office of Economics, 2010, U.S. Passenger Airline Cost Index: Charts 3rd Quarter. • 787, 2011, Airplane Characteristics for Airport Planning, The Boeing Corporation.