Enzyme Activity Guided Inquiry Lab Turnip Peroxidase
Introduction
Peroxidase enzymes are widely distributed in plants and animals, including bacteria, to protect cells against the effects of oxidative stress and cell damage due to hydrogen peroxide. Peroxidases are easily extracted from turnips and other root vegetables and provide a model enzyme for studying enzyme activity—how the rate of an enzyme-catalyzed reaction depends on biotic and abiotic factors. Enzyme activity studies reflect enzyme structure and function and provide the foundation for understanding the mechanism or theory of enzyme action.
Background
The term peroxidase refers to both a class of oxidoreductase enzymes and to specific enzymes within that class. As a general class of enzymes, peroxidases catalyze the oxidation−reduction decomposition reaction of hydrogen peroxide. There are two general types of peroxidases—catalase and peroxidase. Catalase catalyzes the disproportionation reaction of hydrogen peroxide to water and oxygen gas (Equation 1). In reactions mediated by catalase, hydrogen peroxide substrate molecules act as both oxidizing agent (electron acceptor) and reducing agent (electron donor). In contrast, peroxidase acts in the presence of other naturally occurring organic reducing agents, such as ascorbic acid and glutathione, to catalyze the decomposition of hydrogen peroxide. Organic reducing agents, abbreviated AH2, transfer hydrogen atoms and electrons to hydrogen peroxide, resulting in the formation of water and oxidized organic substrates such as A2 in Equation 2. Catalase-catalyzed reaction Peroxidase-catalyzed reaction 2H2O2 → 2H2O + O2 2H2O2 + 2AH2 → 4H2O + A2 Equation 1 Equation 2
The differences in the two equations shown above provide a basis for studying the enzyme activity of turnip peroxidase in this guided-inquiry laboratory investigation. Many endogenous organic compounds may be used as reducing agents in Equation 2. One of the most