Relationship Between Lactate Threshold, OBLA, VO2 Max And 5k Running Performance
Abstract
Research into the relationship between physiological variables and running performance has been variable. The aim of this study was to examine the relationship between 5k running performance and a number of physiological variables in a group of 11 trained club runners (Age 21.451.63yrs, Height 175.092.77cm, Weight 67.865.12kg). The athletes underwent a laboratory treadmill test to determine their maximum oxygen uptake (VO2 max) and running velocities at lactate threshold (v-Tlac) and blood lactate concentration of 4mM (v-OBLA). Running performance was determined by a 5k time-trial on an athletics track for which the average time was 1097.09 ± 108.02 secs. The mean velocities for v-Tlac and v-OBLA were 15.18 ± 1.5km/h, 16.76 ± 1.60 km/h and mean VO2max was 59.10 ± 3.54 ml/kg/min. The best single predictors of 5k running performance were v-OBLA and VO2max (p = .003, p = .007) while v-Tlac was slightly poorer (p = .013). It is concluded that lactate variables may be valid and reproducible predictors for 5km running performance.
Introduction
Research throughout history has established that a number of physiological variables relate to distance running performance, including Lactate Threshold (Tlac), OBLA and VO2 Max (Conley and Krahenbuhl, 1980; Costill, Thomason and Roberts, 1973; Coyle et al, 1983; Farrell et al, 1979; Hagberg and Coyle, 1983; Lafontaine, Londeree and Spath, 1982). The results from this research have been variable.
Evidence has shown that blood lactate variables highly correlate with running performance over a variety of distances. Additionally, these variables contribute to running performance variance more than any other physiological variables (Yoshida et al, 1990, 1993). ‘Lactate Threshold’ describes the point at which exercise begins to hurt more than it should because the body’s lactate production
References: Australian Sports Commission. Physiological Tests for Elite Athletes. Champaign, IL: Human Kinetics, 2000. Allen, W.K., Seals, D.R., Hurley, B.F., Ehsani, A.A., and Hagberg, J.M., (1985). Lactate threshold and distance running performance in young and older endurance athletes. J. Appl. Physiol. 58, 1281–1284. Bassett, D.R., & Howley, E.T., (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sport and Exercise. 32, 70-84. Conley, D.L., and Krahenbuhl, G.S., (1980). Running economy and distance running performance of highly trained athletes. Med. Sci. Sports Exercise. 12, 357-360. Costill, D.L., Thomason, H., and Roberts, E., (1973). Fractional utilization of the aerobic capacity during distance running. Med. Sci. Sports. 5, 248-252. Coyle, E.F., Martin, W.H., Ehsani, A.A., Hagberg, J.M., Bloomfield, S.A., Sinacore, D.R., and Holloszy, J.R., (1983). Blood lactate threshold in some well-trained ischemic heart disease patients. J. Appl. Physiol. 54, 18-23. Coyle, E.F., Coggan, A.R., Hopper, M.K., and Walters, T.J., (1988). Determinants of endurance in well-trained cyclists. J. Appl. Physiol. 64, 2622–2630. Donaldson, S.K.B., and Hermansen, L., (1978). Differential, direct effects of HI on Ca2"-activated force of skinned fibers from the soleus, cardiac and adductor magnus muscles of rabbits. European Journal of Physiology. 376, 55-65. Duggan, A., and Tebbutt, S.D., (1990). Blood lactate at 12 km/h and vOBLA as predictors of run performance in non-endurance athletes. International Journal of Sports Medicine. 11, 111-115. Fabiato, A., and Fabiato, F., (1978). Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. Journal of Physiology. 276, 233-255. Farrell, P.A., Wilmore, J.H., Coyle, E.F., Billing, J.E., and Costill, D.L., (1979). Plasma lactate accumulation and distance running performance. Med. Sci. Sports. 11, 338-344. Foster, C., Costill, D.L., Daniels, J.T. and Fink, W.J. (1978). Skeletal muscle enzyme activity, ® bre composition and ÇV O2 max in relation to distance running performance. European Journal of Applied Physiology. 39, 73-80. Galy, O., Manetta, J., Coste, O., Maimoun, L., Chamari, K., and Hue, O., (2003). Maximal oxygen uptake and power of lower limbs during a competitive season in triathletes. Scandinavian Journal of Medicine and Science in Sports. 13, 185–193. Grant, S., Craig, I., Wilson, J., and Aitchinson, T., (1997). The relationship between running performance and selected physiological variables. Journal of Sport Sciences. 15, 403-410. Hagberg, J.M., and Coyle, E.F., (1983). Physiological determinants of endurance performance as studied in competitive racewalkers. Med. Sci. Sports Exercise. 15, 287-289. Jacobs,I., (1986). Blood lactate Implications for training and sports performance. Sports Med. 3, 10-25. Jones, A.M., and Carter, H., (2000). The effect of endurance training on parameters of aerobic fitness. Sports Medicine. 29, 373–386. Lafontaine, T.P., Londeree, B.R., and Spath, W.K., (1982). The maximal steady state versus selected running events. Med. Sci. Sports Exercise. 13, 190-192. Morgan, D.W., Baldini, S.D., and Martin, P.E., (1989). VO2max among well-trained male runners. Medicine and Science in Sports and Exercise. 21, 78-83. Ramsbottom, R., Phil, M., Nute, M.G.L., and Williams C., (1987). Determinants Of Five Kilometre Running Performance In Active Men and Women. British Journal of Sports Medicine. 21, 9-13. Robergs, R.A., & Roberts, S., (1997). Exercise Physiology: Exercise, performance, and clinical applications. St Louis, Missouri: Mosby. Saltin, B., and Astrand, P.O., (1967). Maximal Oxygen Uptake in Athletes. Journal of Applied Physiology. 23, 353-358. Tesch, P., Sjodin, B., and Karlsson, J., (1978). Relationship between lactate accumulation, LDH activity, LDH isozyme and fiber type distribution in human skeletal muscle. Acta Physiologica Scandinavica. 103, 40-46. Ušaj, A., (2000). The application of criterion OBLA in prescribing running endurance training intensity is limited. KinSI. 6, 57–62. Yoshida, T., Udo, M., Iwai, K., , Muraoka, I., Tamaki, K., Yamaguchi, T., and Chida, M., (1989). Physiological determinants of race walking performance in female race walkers. British Journal or Sports Medicine. 23, 250-254. Yoshida, T., Udo, M., Iwai, K., and Yamaguchi, T., (1993). Physiological characteristics related to endurance running performance in female distance runners. Journal of Sports Sciences. 11, 57-62.