Sewage is a mixture of domestic and industrial wastes. It is more than 99% water, but the remainder contains some ions, suspended solids and harmful bacteria that must be removed before the water is released into the sea. The treatment of wastewater is divided into three phases: pretreatment, primary treatment and secondary treatment. Pretreatment Large solids (i.e. those with a diameter of more than 2cm) and grit (heavy solids) are removed by screening. These are disposed of in landfills. Primary treatment The water is left to stand so that solids can sink to the bottom and oil and grease can rise to the surface. The solids are scraped off the bottom and the scum is washed off with water jets. These two substances are combined to form sludge. Secondary treatment The sludge is further treated in 'sludge digesters': large heated tanks in which its chemical decomposition is catalysed by microorganisms. The sludge is largely converted to 'biogas', a mixture of CH4 and CO2, which is used to generate electricity for the plant. The liquid is treated by bacteria which break down the organic matter remaining in solution. It is then sent to oxidation ponds where heterotrophic bacteria continue the breakdown of the organics and solar UV light destroys the harmful bacteria. The role of the laboratory A wide variety of analytical tests are used to determine the purity of the wastewater at various stages of treatment so that the possibility of harm to either people or the environment is minimised. INTRODUCTION Sewage is a major carrier of disease (from human wastes) and toxins (from industrial wastes). The safe treatment of sewage is thus crucial to the health of any community. This article focuses on the complex physical and biological treatments used to render sewage both biologically and chemically harmless. The Auckland region has two sewage treatment plants: one in Albany and one in Mangere. The process described below is that used by the Mangere
Sewage is a mixture of domestic and industrial wastes. It is more than 99% water, but the remainder contains some ions, suspended solids and harmful bacteria that must be removed before the water is released into the sea. The treatment of wastewater is divided into three phases: pretreatment, primary treatment and secondary treatment. Pretreatment Large solids (i.e. those with a diameter of more than 2cm) and grit (heavy solids) are removed by screening. These are disposed of in landfills. Primary treatment The water is left to stand so that solids can sink to the bottom and oil and grease can rise to the surface. The solids are scraped off the bottom and the scum is washed off with water jets. These two substances are combined to form sludge. Secondary treatment The sludge is further treated in 'sludge digesters': large heated tanks in which its chemical decomposition is catalysed by microorganisms. The sludge is largely converted to 'biogas', a mixture of CH4 and CO2, which is used to generate electricity for the plant. The liquid is treated by bacteria which break down the organic matter remaining in solution. It is then sent to oxidation ponds where heterotrophic bacteria continue the breakdown of the organics and solar UV light destroys the harmful bacteria. The role of the laboratory A wide variety of analytical tests are used to determine the purity of the wastewater at various stages of treatment so that the possibility of harm to either people or the environment is minimised. INTRODUCTION Sewage is a major carrier of disease (from human wastes) and toxins (from industrial wastes). The safe treatment of sewage is thus crucial to the health of any community. This article focuses on the complex physical and biological treatments used to render sewage both biologically and chemically harmless. The Auckland region has two sewage treatment plants: one in Albany and one in Mangere. The process described below is that used by the Mangere