J. ARCHER1 and K. VOGEL2
1
CTR, Kungliga Tekniska Högskolan, Stockholm, Sweden; 2 VTI, Linköping, Sweden E-mail: jeffery.archer@infra.kth.se; katja.vogel@vti.se
As the number of people who reside and work in urban areas increases, so, too, do the needs and demands placed on the infrastructure. This has led to severe congestion in many European cities, a situation which affects not only the environment in terms of pollution, but most notably levels of traffic safety. In Europe, tens of thousands of people are killed in road traffic accidents, and more than 1 million are injured each year at a cost, which is estimated to exceed the total European Union budget by a factor of two. The majority of accidents involving injury occur within urban areas often at junctions, while the number of fatalities outside these areas is greater, largely as a result of higher speed. Traffic safety research has shown a biased interest in the problems associated with motorway and rural areas in the past. There are many reasons, which advocate a greater interest in urban areas, in particular, those related to the safety of unprotected road users. In urban areas the traffic system context is more complex, where a mixed road user environment prevails and greater perceptual and cognitive demands are placed on road users. In the past, many of the more successful safety countermeasures have focused on designing the roadway to meet the needs and limitations of road users. These solutions have, however, proved to be very costly. Today, new and relatively cheap technological solutions referred to as Intelligent Transport Systems (ITS) have been developed which have the capacity to reduce exposure, accident risk, and accident severity. While the long term effects of these systems are largely unknown, and problems associated with standardisation and legislation are in need of resolve, systems such as Intelligent Speed Adaptation and advanced traffic