The purpose of this experiment was to acquaint the students with basic laboratory procedures‚ methods‚ and techniques; to introduce the use of basic laboratory measuring devices; to demonstrate different methods of manipulation of numerical quantities. DENSITY AND SPECIFIC GRAVITY Materials and Methods Part 1: Density of an Unknown Solid 1. We first were asked from our laboratory instructor to attain an unknown solid and were asked to note down the number of the solid. 2. Determine
Premium Density Volume
concentration in water on the rate of photosynthesis. Aim: The aim is to investigate how increasing carbonate in water can affect the rate of photosynthesis. Introduction: The rate of photosynthesis can be increased or decreased in many different ways. For example‚ by adding substances like alkaline or salt to the water‚ you can increase or decrease the acidity or basics‚ if the water has too much acidity‚ it can often delay the rate of photosynthesis‚ often stopping the rate of photosynthesis in the plant
Premium
amines‚ carboxylic acids‚ phenols as well as some neutral compounds. All three of these functional groups can be interconverted from non-ionic organic-soluble forms to water-soluble ionic forms by changing the pH levels. In the experiment done in this lab‚ a mixture of and a neutral compound and either an acid or base impurity will be separated by an acid-base extraction. The unknown compound will then be purified by recrystallization and identified by melting points. Experimental Discussion
Premium
is the capacitative reactance‚ R is the resistance‚ and ω = 2π f ( f is the linear frequency). Apparatus • PC with DataStudio installed • Science Workshop 750 USB Interface Box • Power Amplifier • Voltage Sensor • AC/DC Electronics Lab Board • LCR meter • Connecting patch cords Experimental Procedure The experimental procedure can be divided into three parts: Part I: Using a Frequency Scan to Determine the Resonance Frequency • The first
Premium Alternating current Inductor Electrical resistance
References: a) http://en.wikipedia.org/wiki/Reynolds_number b) http://www.engineeringtoolbox.com/reynolds-number-d_237.html c) http://www.engineeringtoolbox.com/laminar-transitional-turbulent-flow-d_577.html d) http://www.slashdocs.com/prqt/lab-report-osbourne-reynolds-apparatus.html APPENDIX The Reynolds Apparatus that was used during the experiment.
Premium Fluid dynamics Fluid mechanics Viscosity
conducted on 13th August 2008 in Machines Dynamics Laboratory. The experiment was conducted in groups of four‚ and was supervised by lecturer Mr. Mohd Azahari Johan. Conducting this experiment is for fulfilling the requirements of Applied Mechanics Lab (MEC 424). A pendulum is defined as body so suspended from a fixed point as to swing freely to and from by the alternate action of gravity and momentum. It is used to regulate the movements of clockwork and other machinery. Therefore‚ a compound
Premium Pendulum
I.Purpose The purpose of this lab is to show how potential energy and kinetic energy is shown and transferred using a model rollercoaster. This lab also demonstrates the Law of Conservation of Energy. II.Introduction Potential and Kinetic energy have a very big relationship. The Law of Conservation of Energy states that “Energy cannot be destroyed or created‚ but can be transformed or transferred.” This lab will help demonstrate this law and show the conversion between Kinetic and Potential
Free Energy Potential energy Conservation of energy
McLean 1 Creating Acetylene Gas Introduction The purpose of the lab was to determine the ratio of air to acetylene results in complete combustion of acetylene gas. The balanced chemical equation for this experiment was C2H2(g) + O2(g) --> CO2(g)+ H2O(l). Complete combustion is the reaction of an element or compound with oxygen to produce the most common oxides and energy. Complete combustion occurs when the fuel and oxygen combine in exact proportions to completely burn the fuel
Premium Oxygen Combustion
PRE LAB REPORT Reynaldo Riboul TLC and Column Chromatography October 6‚ 2013 Table of Chemicals: Chemical Hazards Mol. Wt. Density Grams Moles Acetone Flammable‚ Irritant 58.08 g mol−1 0.791 g cm−3 2.0 g 0.0344 Hexane Flammable‚ Irritant‚ Dangerous to Environment 86.18 g mol−1 .6548 g mL−1 9.0 g 0.1044 Fluorene Very toxic to aquatic life with long lasting effects 166.223 g/mol 1.202 g/mL 0.3 g 0.00180 Fluorenone Irritant 180.20 g mol−1 1.13 g/cm3 0.3 g 0.00166
Free Solvent Oxygen Laboratory glassware
Lab 17 Amino Acids and Proteins Lab date 10/22/2013 12-1350 I Purpose The purpose of this experiment was to separate mixtures of II Method For a complete list of experimental procedures see prelab outline attachment #1. “For a complete list of experimental procedure see Seager‚ Spencer L. and Slabaugh‚ Michael R. Safety-Scale Laboratory Experiments for Chemistry for Today General‚ Organic and Biochemistry; Thomson Brooks/Cole‚ Belmont‚ CA‚ USA‚ 2008; pp.221-225”. III Data Part A Mass
Premium Experiment Chemistry Cholesterol