In the first week of the experiment‚ the goal was to find the moles of NaOH‚ as well as a 0.1 molarity‚ while in the second week to goal was to determine the percent KPH in the sample. The first week titrations were successful and had very similar amounts of pink‚ which shows the precision of the results. The best trials were in the sample trial and the second and third trials. The average molarity calculated for the first week was 0.1017 M. This very close to the 0.1 M that was supposed to be made
Premium Chemistry Concentration Experiment
Ten Minutes of Specific Heat Remi Adams East Rowan High School AP Environmental Science Abstract Specific heat and climate were the primary focus of this lab. Specific heat is defined as “the measure of the ability of a substance to change temperature”. The purpose for carrying out this lab was to determine the specific heat/rates of both soil and water‚ and then comparing them. Students also were to relate specific heat to climate. Students were to determine which substance expressed
Premium Specific heat capacity Heat Thermodynamics
Experiment: Calorimetry Laboratory Experiment – Heat of Solution Aim: The aim was to use calorimetric measurements to calculate the molar heat of solution of NaOH and NH4NO3. Method: 1. 50g of water was poured into a clean polystyrene calorimeter (Styrofoam cup) and the initial temperature was measured. 2. A teaspoon of 2g of the selected salt was measured and added into the water. 3. The solution was stirred and the final temperature was measured when the solution stabilised and the results
Premium Thermodynamics Measurement Chemistry
Specific heat is the property of the material that an object is made of. The greater the material’s specific heat and the mass‚ the more energy must be added to change its temperature. The goals of this lab were to calculate the specific heat of water and compare to the known value of 4.19J/°Cg. Another goal was to calculate the efficiency of the hot pot used for the experiment and to estimate the cost to heat water for a cup of tea and to bath in a bathtub. The thermal energy E= cm Δ T‚ required
Premium Heat Thermodynamics Energy
Calculations/Analysis Through this lab‚ we are now able to calculate the molar heat of combustion for paraffin‚ since we have the difference of the mass in candle before/after and the periodic table of elements (for converting g to moles of paraffin). Molar heat of combustion = (kJ of heat)/(mole of fuel) However‚ we do not know how much heat was released nor the mole of fuel (paraffin). In order to find the amount of heat released‚ we use the formula: g=mcΔT. Here‚ g represents the heat‚ m represents the mass
Premium Water Chemistry Temperature
Heat engine lab Intro: when an engine runs‚ it pumps pistons that move up and down and provide energy to the engine to it to go. These pistons move because of pressure and heat. This work done on the system is not only mechanical but its also thermodynamic. When a piston undergoes one full cycle its displacement is zero because it comes back to its resting place. This means that its net thermodynamic work to be done should also be zero‚ as well as its total internal energy. In order to test this
Premium Energy Thermodynamics Heat
MECHANICAL ENGINEERING 449 SENIOR LAB Test of a Heat Pump Submitted Submitted by: Submitted to: Executive Summary: The purpose of this experiment was to determine the performance values of a Hylton Air and Water Heat Pump System. The system uses refrigerant 134a and water as the working fluids. The power input of the system was measured. The rate of heat output and the coefficient of performance are
Premium Thermodynamics Heat Heat pump
CALORIMETRY Abstract: During the experiment‚ the group were able to perform the following objectives; to compute the heat capacity of a Styrofoam-cup calorimeter‚ and also to compute the heat of neutralization of 1.0 M hydrochloric acid and 1.0 M sodium hydroxide‚ the heat of dilution of concentrated sulfuric acid‚ and the heat of solution of solid ammonium chloride The sixth experiment was named "Calorimetry" wherein it is the measurement of how much heat is gained or released by a system
Premium Energy Enthalpy Hydrochloric acid
Activity 33 PS-2826 Latent Heat of Fusion Thermodynamics: phase change‚ latent heat of fusion‚ melting Qty 1 1 1 1 1L 0.5 L 1 Equipment and Materials PASPORT Xplorer GLX Fast-Response Temperature Probe (included with GLX) Basic Calorimetry Set (1 calorimeter cup) Balance Water‚ about 15 degrees warmer than room temperature Ice‚ crushed Towel Part Number PS-2002 PS-2135 TD-8557 SE-8723 Purpose The purpose of this activity is to determine the amount of thermal energy needed to change a specific
Premium Energy Thermodynamics Heat
Chem 17 ▪ General Chemistry Laboratory II Experiment 1 Calorimetry INTRODUCTION Chemical reactions are usually accompanied by the evolution (exothermic reaction) or absorption (endothermic reaction) of heat energy. When measured at constant pressure‚ the heat evolved (qp < 0) or absorbed (qp > 0) is equal to the enthalpy change‚ symbolized by ΔH. ΔH is positive for an endothermic process and negative for an exothermic one. If H f is the enthalpy of the final state and Hi of the initial state
Premium Chemical reaction Thermodynamics Enthalpy