SCHOOL OF FOOD SCIENCE & NUTRITION LABORATORY REPORT NT20903 FOOD CHEMISTRY AND BIOCHEMISTRY Determination of free fatty acid(FFA) and iodine value (IV)in oil LECTURER NAME : MOHD NAZRI BIN ABDUL RAHMAN LAB SESSION : 3 OCTOBER 2011 (GROUP 4‚ MONDAY) Group Member Title: Determination of free fatty acid (FFA) in oil and determination of iodine value (IV) in oil Introduction Acid value or free fatty acid content is an important characteristic commonly used in quality control of fat
Premium Fatty acid
types of radiation and radioactive emissions in the world wide that can be used in medicine. Iodine-131 has a big effect and usage for medicine where it has 53 protons‚ 53 electrons and 78 neutrons. Iodine-131 has varied uses in medicine where it is utilized as a part of atomic pharmaceutical restoratively and can likewise be seen with symptomatic scanners in the event that it has been utilized remedially. Iodine-131 they can be promptly followed even in moment amounts with such discovery gadgets as gamma-beam
Premium Ionizing radiation Gamma ray Radioactive decay
determine the rate equation for the reaction between Hydrogen peroxide and iodide ions‚ and to investigate the effects of a catalyst and temperatures on the reaction and to derive the activation enthalpy. Background knowledge: 1Hydrogen peroxide reacts with iodide ions producing iodine‚ when in an aqueous acid solution. H2O2 (aq) + 2I- (aq) + 2H3O+(aq) I2 (aq) + 2H2O(l) To detect iodine you can look at the color shown by the addition of starch solution. Iodine also reacts with sodium thiosulphate
Free Chemical kinetics Chemical reaction Reaction rate
of Chlorine and Iodine in Water I. Introduction The purpose of this laboratory was to determine the amount of chlorine and iodine in a sample of water by titration using a starch indicator and to standardize a sodium thiosulfate solution. Chlorine is added to municipal water supplies to purify it enough to become safe to drink. Iodine is also added to water when people camp or go hiking in the back country where they cannot bring purified water along. Chlorine and iodine are added to kill
Premium Iodine
Lab : Iodine-starch Clock Reaction Pre-lab: Before the lab was conducted‚ the concentration of the Iodate ions to be in the mixture made by dissolving specific volumes of solution A with a constant concentration and water was calculated using the dissolution formula: C1V1 = C2V2 Sample Calculation 1: Concentration of the Iodate ions: For mixture 1: C2 = C1V1/ V2 = (0.020mol/L) x (0.003L)/(0.01L) = 0.006mol/L The same calculations were used in the calculating of the
Premium Solution Time Chemistry
Effect of Iodine on mercury concentrations in dental-unit wastewater John Michael Panganiban and Ian Jasper Ocampo Objective: This study was undertaken to determine whether iodine used to control bacteria in dental unit wastewater could increase mercury concentrations in dental wastewater. Introduction: Two of the major concerns in dentistry are biofilm in dental unit waterlines and the contamination of dental unit wastewater with mercury. Biofilms are microscopic communities that consist
Premium Mercury
Kinetics Kinetics 6.1 Rates of reaction 6.2 Collision theory 6 16.1 Rate Expression (AHL) 16.2 Reaction mechanism (AHL) 16.3 Activation energy (AHL) 6.1 Rates of reaction 6.1.1 Define the term rate of reaction. 6.1.2 Describe suitable experimental procedures for measuring rates of reactions. 6.1.3 Analyse data from rate experiments. © IBO 2007 Figure 601 An explosion is a quick reaction D ifferent chemical reactions occur at different rates (i.e. speeds)
Free Chemical reaction Chemical kinetics Reaction rate
Purpose: To determine the general rate law for the reaction of S2O82- + I- through a series of experiments and calculations. Materials: -Temperature probe -3 large test tubes -3 rubber stoppers -Pipets -0.20 M KI soln -0.20 M NaCl soln -0.010 M Na2S2O3 soln -2% starch soln -0.20 M K2SO4 -0.20 M K2S2O8 -0.2 M CuSO4 -Timer or stopwatch -Small beaker -Hot water Procedure: Refer to Lab #12‚ No changes Data: Table #1: Quantitative/Qualitative Observations Room Temp: 25.4°C
Premium Chemical reaction Reaction rate
Introduction The reaction rate of a chemical reaction is determined as the change in the concentration of a reactant or product over the change in time. [1] The rate of a reaction is determined by experiment. Many factors influence the rate of a reaction: the nature of the reaction‚ concentration‚ pressure‚ temperature‚ and surface area‚ presence of catalyst and intensity of light. [2] For a chemical reaction‚ the rate law or rate equation is a mathematical expressed equation that links the reaction rate with
Premium Chemical reaction Reaction rate Chemical kinetics
16: Kinetics: The Iodine Clock Jane Smith Purpose: The objective of this experiment was for students to apply their knowledge of kinetics and rate laws in order to determine the rate of a chemical reactions‚ activation energy‚ and frequency factors of those reactions. Specifically‚ this experiment was performed using a series of solutions with varying concentrations of KI‚ Na2S2O3‚ and (NH4)2S2O3 . Students recorded time elapsed to observe physical evidence of a reaction taking place in a solution
Premium Chemical reaction Chemistry Reaction rate