ANAEROBIC AND AEROBIC METABOLISM Lab 5 BCEM 341 – Winter 2014 Nebojsa Kuljic 10066717 Partner: Kendra Skalyn B02 Introduction Cells of all organisms can obtain energy through the combustion of sugars‚ either in the presence of oxygen (Aerobically) or without oxygen (Anaerobically). The purpose of this experiment was to perform a quantitative investigation of the differences between Anaerobic and Aerobic metabolism using pea seedlings and yeast organisms [1]. Aerobically
Premium Cellular respiration Adenosine triphosphate Metabolism
we prevent spread of mosquitoes in our house without buying with high-priced electric mosquito killer lamps‚ insect killer racket or any other device that is too pricy for killing insects and mosquitoes? II. Title Mosquito Trapper Using Sugar And Yeast III. Introduction Our group observed that many people especially children are prone in getting sickness from mosquitoes and may suffer sickness like Dengue and Malaria that may lead to death. Our group also observed that we can create a mosquito
Premium Mosquito Insect Malaria
Ummatul B. Choudary Dr. Gerard P. McNeil Biology 202 Lab GGJ 4/21/2018 LAB REPORT Lab #9- Yeast Fermentation Dates of performed work: 3/26/18 Date submitted: 4/23/18 Abstract Yeast are unicellular fungi which act as facultative anaerobes. This means that yeast is able to produce ATP by aerobic respiration while oxygen is present‚ but are also
Premium Yeast Ethanol Carbon dioxide
Osmosis is the movement of water across a membrane. It always navigates to the area of the membrane with a higher solute concentration. We take a closer look at the effects of osmosis in this lab through the examination of red blood cells (sheep)‚ plant cells (elodea)‚ and active transport in yeast. Under the microscope‚ we can determine the effects on plant and animal cells exposed to hypotonic‚ hypertonic‚ and isotonic sodium chloride solutions. Plant cells have a cell wall; however‚ animal cells
Premium Osmosis Concentration Chemistry
Yeast Fermentation Lab Report SBI4U Chaweewan. Sirakawin Present to Ms.Allinotte November 21. 2014 Introduction: Fermentation is a metabolic pathway that produce ATP molecules under anaerobic conditions (only undergoes glycolysis)‚ NAD+ is used directly in glycolysis to form ATP molecules‚ which is not as efficient as cellular respiration because only 2ATP molecules are formed during the glycolysis. One type of fermentation is alcohol fermentation‚ it produces
Premium Cellular respiration Carbon dioxide Oxygen
The Effect of Temperature on the Rate of Yeast Respiration Abstract Carbon dioxide is a waste product of yeast respiration. A series of experiment was conducted to answer the question; does temperature have an effect on yeast respiration? If the amount of carbon dioxide is directly related to temperature‚ then varying degrees of temperature will result in different rates of respiration in yeast. The experiment will be tested using yeast and sugar at different water temperatures. I predict
Free Carbon dioxide Oxygen Temperature
examine the rate of alcoholic fermentation using various carbohydrates. Hypothesis: If the yeast is placed in 5% glucose or sucrose solutions‚ then carbon dioxide production will increase over time. If boiled yeast is placed in a 5% sucrose solution‚ then carbon dioxide production will remain constant. Variables Independent variable: Carbohydrate solutions (5% solutions of glucose and sucrose) and boiled yeast Dependent variable: Rate of reaction of alcoholic fermentation as calculated by size of
Premium Carbon dioxide Yeast Metabolism
Fermentation Lab Report Introduction: Fermentation‚ a type of anaerobic respiration that breaks down glucose into ethanol and carbon dioxide without the use of oxygen‚ is extremely vital in food processing. Especially useful in the making of bread and wine is yeast‚ a single-celled fungus. The rate of fermentation of these products can be done by measuring the amount of carbon dioxide produced by the work of the yeast. The specific variable we tested was the volume of fructose in each vial solution
Premium Carbon dioxide Enzyme Yeast
Lab: Cellular Respiration in Yeast Lab Report Form Your Name: “What do you think? – What do you know?” Questions: In this lab‚ we will investigate the effect of sucrose concentration on the rate of cellular respiration in yeast. Under specific conditions‚ yeast will convert sucrose into glucose and then use this glucose in cellular respiration. 1. Yeasts have been used by humans in the development of civilization for millennia. What is yeast? How have humans used yeasts? They are most
Premium Carbon dioxide Cellular respiration Oxygen
Purpose: The purpose of this lab was to gain a complete understanding around the rate of cellular respiration within multicellular organisms‚ also to research and understand how to use a CO2. Background: Living systems require free energy and matter to maintain order‚ to reproduce‚ and grow. Energy deficiencies cause disruptions at the population and ecosystem levels as well. 1 mol of H2O produces 1 mol of CO2 through cellular respiration. Autotrophic organisms capture free energy from the environment
Premium Carbon dioxide Oxygen Cellular respiration