Students should already have an understanding on right triangles. Explain a proof of the Pythagorean Theorem and its converse. b. Students should be able to solve two-step equations. c. Students should be able to calculate and estimate square roots. d. Students should be able to evaluate expressions or equations with single digit exponents Students should already have an understanding on right triangles. Explain a proof of the Pythagorean Theorem and its converse. b. Students
Premium Mathematics Education Geometry
Tutorials Contained in Chapter 2 • • • • • • • Tutorial 2.1: Sketch Work Modes Tutorial 2.2: Simple Profiles & Constraints Tutorial 2.3: Advanced Profiles & Sketch Analysis Tutorial 2.4: Modifying Geometries & Relimitations Tutorial 2.5: Axes & Transformations Tutorial 2.6: Operations on 3D Geometries & Sketch planes Tutorial 2.7: Points & Splines Copyrighted Material Copyrighted Material Copyrighted Material 2-1 An Introduction to CATIA V5 Chapter 2: SKETCHER Copyrighted Material
Premium Circle Euclidean geometry
in Mathematics 3: Geometry for Secondary Third Year Level I. Lesson Objectives At the end of the class 100% of the students should be able to learn 75% of the lesson and be able to; a.familiarize the formula in getting the slope; b.find the slope of the line‚ with given two points on the line or equation of the line; c.graph a line using its slope and a point on the line; and d.volunteer on solving problems. II. Subject Matter Subject: Geometry Topic: The
Premium English-language films Analytic geometry Imperial units
was the last of the great mathematicians of the golden age of Greek mathematics. Apollonius‚ known as "the great geometer‚" arrived at the properties of the conic sections purely by geometry. His descriptions were so complete that he would have had little to learn about conic sections from our modern analytical geometry except for the improved modern notation. He did not‚ however‚ describe the properties of conic sections algebraically as we do today. It would take almost 2000 years before mathematicians
Premium Conic section Ellipse Analytic geometry
Molecular Electronics.-Introduction Molecular electronics is the branch of nanotechnology which deals with the applications and construction of nano building blocks that are used in electronic circuit manufacturing and desgin.It is sometimes called as moletronics.All the major electronic fabrications are supported by molecular electronics. Molecular electronics (sometimes called moletronics) involves the study and application of molecular building blocks for the fabrication of electronic components
Premium Nanotechnology Electronic engineering
____________________ ____________________ ____________________ ____________________ Title: Determination of Molecular Weight of a Volatile Liquid By Vaporization: Dumas Method Background of the Study Problem In this experiment‚ an unknown liquid is in need to be identified and one of the key factors to identify it is to determine its molecular weight. In order to determine the molecular weight of a particular substance which in this experiment’s case is a volatile liquid‚ the need to convert the
Premium Ideal gas law Gas Water
1 The Effect of Molecular Weight on the Rate of Diffusion of Substances1 Alexander Ken Libranza Group 1 Sec. A – 1L March 6‚ 2012 A scientific paper submitted in partial fulfillment of the requirements in General Biology I laboratory under Prof. Cheryl M. Talde‚ 2nd sem.‚ 2011-2012. 1 2 ABSTRACT The effect of molecular weight on the rate of diffusion was assessed using two tests: the glass tube test and the agar-water gel test. In the glass tube set-up‚ two cotton plugs soaked
Premium Molecular diffusion Hydrochloric acid Ammonia
Scientific Paper on Diffusion 2 ABSTRACT The effect of molecular weight on the rate of diffusion was assessed using two tests: the glass tube test and the agar-water gel test. In the glass tube set-up‚ two cotton plugs soaked in two different substances (HCl and NH4OH) were inserted into the two ends of the glass tube. The substance with the lighter molecular weight value (NH4OH‚ M = 35.0459 g/mole) diffused at a faster rate (dAve = 25.8cm)‚ resulting in the formation of a white ring around the
Premium Molecular diffusion Hydrochloric acid Ammonia
and demonstrate this process in gases b. to cite molecular weight and time as two factors affecting the rate of diffusion c. to formulate a hypothesis on the relationship of each of these factors on the rate of diffusion d. to conduct and experiment to determine the effects of the two factors on the rate of diffusion e. to compute the partial rate and average rate of diffusion f. to conclude on the relationships of molecular weight and time on the rate of diffusion II. Materials:
Premium Diffusion Molecular diffusion Chemistry
René Descartes: "Father of Modern Mathematics" 1596-1650 December 13‚ 2004 René Descartes was born in La Haye‚ Touraine (France) in March of 1596 and died at Stockholm on February 11‚ 1650. René‚ the second of a family of two sons and one daughter‚ was sent to the Jesuit School at La Flêche at the early age of eight. Since he was of poor health he was permitted to lie in bed till late in the mornings‚ a custom which
Premium René Descartes Analytic geometry Cartesian coordinate system