Engineering
Journal,
48 (1992)
17-29
17
Development and verification of a simulation model for a nonisothermal water-gas shift reactor
Riitta L. Keiski”, Tapio SaImib and Veikko J. Pohjola”
‘Department bDepatiment of Process Engineering, of Chemical Engineering, University of Ouh, SF-90570 Oulu (Finland) Abo Akademi, SF-20500 Turku (Finland..
(Received December 29, 1989; in final from July 5, 1991)
Abstract
A fixed-bed test reactor suitable for studying non-isothermal reaction kinetics was developed. The reactor allows axial and radial temperature measurement a.s well as online gas analysis. The water-gas shift reaction over a commercial iron-based catalyst was chosen as the subject of a case study. A non-isothermal reactor operating at temperatures between 575 and 675 K and with feed compositions corresponding to industrial conditions was used. A method of sequential regression analysis was applied to determine the kinetic parameters from the temperature and conversion profiles of the bed. The experimental data could be fitted by a power-law type of reaction rate expression. The rate equation combined with a plug flow model of the bed was successfully used to predict the fixed-bed behaviour within large temperature, concentration and space velocity intervals.
1. Introduction
To study the kinetics of catalytic reactions several experimental techniques have been developed. All these techniques such as gradientless reactors, pulse microreactors, isotope labelling, IR microreactors, while good for fundamental kinetic studies, prove to be less useful iu providing information about the macrokinetics of a catalytic process. In many cases
the mass and heat transfer phenomena essential for the modelling of industrially operating reactors can be made by analysing the experimental concentration and temperature profiles. The water-gas shift reaction studied in the present work is a reversible exothermic reaction which is
References: 23 R. C. Reid, J. M. Prausnitz and T. K. Sherwood, TheProperties of Gases and Liquids, McGraw-Hill, New York, 3rd edn., 1977.