Md. Sazzad Hossain1, Md. Minul Hasan1, Md. Motiur Rahman1, A. S. M. Delowar Hossain1, Ziaul Haque2
1
Computer Science & Engineering, Mawlana Bhashani Science and Technology University 1 Santosh, Tangail-1902, Bangladesh University Grants Commission of Bangladesh Email: sazzad_101@yahoo.com, x.rajib.x@gmail.com
2
Abstract - In this paper, we propose a new design technique of reversible gates with N-MOS based pass transistor. The conventional reversible gates are based on C-MOS with transmission gates. We also compare the proposed reversible gates with the conventional CMOS reversible gates.
II. Background
In conventional (irreversible) circuit synthesis, one typically starts with a universal gate library and some specification of a Boolean function. It is widely known that an arbitrary Boolean function can be implemented using only NAND gates. A NAND gate has two binary inputs (say A, B) but only one binary output (say P), and therefore is logically irreversible.
Keywords
Reversible computing, Fredkin gate, Feynman gates, full adder, CMOS, NMOS, pass transistor.
2.1 Reversible Gates and Circuits
I. Introduction
Irreversible hardware computation results in energy dissipation due to information loss. According to Landauer’s research, the amount of energy dissipated for every irreversible bit operation is at least KTln2 joules, where K=1.3806505*10-23m2kgs-2K-1 (joule/kelvin) is the Boltzmann’s constant and T is the temperature at which operation is performed [1, 2]. In 1973, Bennett showed that KTln2 energy would not dissipate from a system as long as the system allows the reproduction of the inputs from observed outputs [3, 4]. Reversible logic supports the process of running the system both forward and backward. This means that reversible computations can generate inputs from outputs and can stop and go back to any point in the computation history. Thus, reversible logic