(Project in Math)
Submitted by: Submitted to:
Jericah Manalang Mrs. Joycelene Migano
Table of Contents
A. Introduction B. The Art of Reasoning C. The Models of Points, Lines, and Angles D. The Transversals E. Polygons 1. Triangle 2. Quadrilateral 3. Pentagon 4. Hexagon 5. Heptagon 6. Octagon 7. Nonagon 8. Decagon 9. Dodecagon 10. Tetradecagon F. Circles
Introduction
"Geometry," meaning "measuring the earth," is the branch of math that has to do with spatial relationships. In other words, geometry is a type of math used to measure things that are impossible to measure with devices. For example, no one has been able take a tape measure around the earth, yet we are pretty confident that the circumference of the planet at the equator is 40,075.036 kilometres (24,901.473 miles) . How do we know that? The first known case of calculating the distance around the earth was done by Eratosthenes around 240 BCE. What tools do you think current scientists might use to measure the size of planets? The answer is geometry.
However, geometry is more than measuring the size of objects. If you were to ask someone who had taken geometry in high school what it is that s/he remembers, the answer would most likely be "proofs." (If you were to ask him/her what it is that s/he liked the least, the answer would probably be "proofs.") A study of Geometry does not have to include proofs. Proofs are not unique to Geometry. Proofs could have been done in Algebra or delayed until Calculus. The reason that High School Geometry almost always spends a lot of time with proofs is that the first great Geometry textbook, "The Elements," was written exclusively with proofs.
This textbook is based on Euclidean (or elementary) geometry. "Euclidean" (or "elementary") refers to a book written over 2,000 years ago called "The Elements" by a man named