Ammonia impacts both the environment and human health. * Environmental Impacts * Human Health Impacts
Environmental Impacts
When in gaseous form, ammonia has a short atmospheric lifetime of about 24 hours and usually deposits near its source . In particulate form ammonia can travel much further impacting a larger area. Both gaseous and particulate ammonia contribute to eutrophication of surface waters, soil acidification, fertilization of vegetation, changes in ecosystems ,and smog and decreased visibility in case of major gas .
Eutrophication
Eutrophication is a result of nutrient pollution (from deposition or run-off) into natural waters (creeks, rivers, ponds, or lakes). Eutrophication generally promotes excessive plant growth and decay, favors certain weedy species over others, and is likely to cause severe reductions in water quality. In aquatic environments, enhanced growth of choking aquatic vegetation or algal blooms disrupt normal functioning of the ecosystem, causing problems such as a lack of oxygen in the water, needed for fish and other aquatic life to survive. The water then becomes cloudy, colored a shade of green, yellow, brown, or red.
Soil Acidification
When ammonia reaches the soil surface, it usually reacts with water in the soil and is converted into its ionic form, ammonium (NH4+) and absorbes to the soil. The ammonium in the soil eventually disassociates or is nitrified into nitrite (NO2-) or nitrate (NO3-) by nitrifying bacteria, releasing H+ ions into the soil (3, 4). If not taken up by biomass and converted to methane, the surplus H+ ions eventually lead to the formation of an acidic soil environment. The nitrogen left over in the soil will either be taken up by plants, stored in the soil, returned to the atmosphere, or will be removed from the soil in runoff or leaching (3).
Fertilization of Vegetation
Fertilization of vegetation by ammonia occurs in much the same way as applying fertilizer to the